

Taylor Methods and the Dynamical Analysis of Muon Accelerators

J. Scott Berg
Third International Workshop on Taylor Methods
17 December 2004

What is a Particle Accelerator?

- Guide charged particles along a particular path, using magnets
- That path is often circular, and the particles make many $(10^8!)$ turns
- The particles are often accelerated from lower energies to higher energies
- Usually trying to do something with these particles eventually
 - Generally collide them into each other
 - ◆ Sometimes collide them into a stationary object
 - ◆ Sometimes make use of the radiation that they produce
 - ◆ For muons, sometimes we leave them in a ring and let them decay, producing a beam of neutrinos

Accelerator Hamiltonian

- Define reference curve $x_0(s)$, s is arc length
- Coordinates are defined as deviations from this reference curve

$$\hat{s}(s) = \frac{d\mathbf{x}_0}{ds} \qquad \hat{x}(s) \cdot \hat{s}(s) = 0 \qquad \hat{y}(s) = \hat{s}(s) \times \hat{x}(s)$$
$$x = [\mathbf{z} - \mathbf{x}_0(s)] \cdot \hat{x} \qquad y = [\mathbf{z} - \mathbf{x}_0(s)] \cdot \hat{y}$$

- Hamiltonian dynamics
 - ◆ Independent variable is s
 - Hamiltonian, function of phase space coordinates (x, p_x, y, p_y, t, E)
 - ◆ Vector field based on derivatives of Hamiltonian:

$$(\partial_{p_x}H, -\partial_xH, \partial_{p_y}H, -\partial_yH, -\partial_EH, \partial_tH)$$

Accelerator Hamiltonian (cont.)

$$-(1+hx)A_{s}$$

$$-(1+hx)\sqrt{\left(\frac{E-q\phi}{c}\right)^{2}-(p_{x}-qA_{x})^{2}-(p_{y}-qA_{y})^{2}-(mc)^{2}}$$

- Simplified: ignoring torsion and vertical bending
- h is curvature of reference curve
- Electrostatic potential ϕ , magnetic vector potential (A_x, A_y, A_s)
 - Generally $\phi = 0$

Vector Potentials

• Vector potentials obey Maxwell's equations; for no curvature, time-independent magnetic fields:

$$A_{s}(x,y,s) = \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \frac{1}{k!(k+m)!} \Re\{A_{m}^{(2k)}(s)(x+iy)^{m}\} \left(-\frac{x^{2}+y^{2}}{4}\right)^{k}$$

$$A_{x}(x,y,s) = \sum_{m=1}^{\infty} \frac{1}{2m} \sum_{k=0}^{\infty} \frac{1}{k!(k+m)!} \Re\{A_{m}^{(2k+1)}(s)(x+iy)^{m}\} \left(-\frac{x^{2}+y^{2}}{4}\right)^{k}$$

$$A_{y}(x,y,s) = \sum_{m=1}^{\infty} \frac{1}{2m} \sum_{k=0}^{\infty} \frac{1}{k!(k+m)!} \Im\{A_{m}^{(2k+1)}(s)(x+iy)^{m}\} \left(-\frac{x^{2}+y^{2}}{4}\right)^{k}$$

Basic Accelerator Design

 \bullet For given m, lowest order contribution to vector potential is

$$A_s(x, y, s) = \Re\{A_m(s)(x + iy)^m\}$$

- When bending particle, use $A_s = -A_1(s)x$, with A_1 and h chosen together to keep particle on (near) reference curve (dipole)
 - ◆ I'm cheating, ignoring curvature terms here
- To give linear stability of orbits about reference curve, use term $A_s = A_2(s)(x^2 y^2)/2$ (quadrupole)
 - ◆ Control other things we this also, discussed shortly
- Notice: these are low-order Taylor series, they generate low-order Taylor series in the Hamiltonian and vector field
 - ◆ If there were no s dependence, there would be no higher-order terms
- These A_s create linear terms in the vector field

Quadrupole Cross-Section

Longitudinal Field Dependence

• Field in magnet is designed to be as constant longitudinally as possible

- Short sections on ends where field is not constant, giving higher-order terms
- \bullet The integral of A_m gives the lowest-order effect
- The longer the magnet, the smaller the relative additional contribution of the ends is
 - End length is proportional to magnet aperture
 - ◆ All these effects generate higher-order terms
- \bullet A_x and A_y are higher-order

LHC Magnet Example

- Nominal dipole length is 14.312 m
- Inner coil diameter: 5.6 cm; outer coil diameter: about 11.8 cm.
- Thus, end length is small fraction of total length, leading to small relative importance of ends
- There are specific magnets for which ends are important, but they are small in number
- The RMS beam size in the arc is 1.7 mm
- There are higher multipole components in these magnets (A_m) , with m > 2, which are kept to about 10^{-4} relative to the desired multipole component at a radius of 1.7 cm.
- Hamiltonian is linear in A_s

LHC Magnet Example (cont.)

- There are nonlinear magnets (A_m with m > 2) intentionally used, but they should give small contributions
- Conclusion:
 - ◆ Contributions of magnets to the vector field are primarily linear
 - Higher-order contributions are small
 - Magnetic contributions to map are well-represented by a rapidly converging Taylor series

LHC Magnet Photo

LHC Magnet Cross-Section

Angles

• Can expand square root part of Hamiltonian (ignore potentials, curvature) $(p = \sqrt{(E/c)^2 - (mc)^2}$

$$-p + \frac{p_x^2 + p_y^2}{2p} + \frac{(p_x^2 + p_y^2)^2}{8p^3} + \cdots$$

- Second term gives linear contribution to vector field
- Subsequent terms gives terms that are higher order in p_x/p and p_y/p
- LHC: the largest value for p_x/p is 1.2×10^{-4}
- Conclusion: square root contribution is well-represented by a rapidly converging Taylor series

Energy Spread

- Say we have a reference energy E_0 ; the energy is $E_0 + \Delta$
- Energy appears in above square root term as $\sqrt{(E/c)^2 (mc)^2}$
- LHC: RMS $\Delta/pc = 3.06 \times 10^{-4}$
- Again, expect a rapidly converging Taylor series

Curvature

- \bullet Terms like 1 + hx appear in Hamiltonian, h is curvature
- LHC: $h = 3.57 \times 10^{-4} \text{ m}^{-1}$, typical x = 1.7 mm
- Similar curvature terms appear in magnetic field expansions
- Again, terms are small, Taylor series converges rapidly

Conclusions for Standard Machines

- For most high energy particle accelerators
 - ◆ Vector field is well represented *globally* by a Taylor series
 - ◆ Terms in the Taylor series converge rapidly due to small amplitudes
 - Magnetic fields look like a Taylor series, by design
 - ◆ Linearized vector field gives a very good picture of the dynamics
- Cannot ignore nonlinear terms
 - With only linear terms, motion is stable for arbitrary displacements from the reference orbit
 - ◆ Due to small amplitudes, typically don't need an extremely high order Taylor series to represent the motion
 - ◆ Typically 8th order is sufficient for large machines
- Exceptions to this
 - Small rings: angles large, curvature large
 - Muon machines

Dynamic Aperture Plot

Applications of Taylor Methods

- Replace integration of equations of motion with evaluation of Taylor series
 - ◆ LHC contains around 2500 magnets
 - Beam makes around 6×10^8 turns
 - ◆ Integrating through each magnet can be prohibitive
 - ◆ Instead, construct Taylor series representing one-turn map
- Design an analysis: linear
 - Stability of fixed point
 - ◆ Beam sizes
- Design and analysis: nonlinear
 - Amplitude-dependent tunes (eigenvalues)
 - ◆ Resonances (higher-order fixed points away from reference orbit)

Muon Accelerators

- Beam sizes, energy spreads are large
- Different types of lattices
 - ◆ Cooling lattices
 - ◆ Fixed Field Alternating Gradient (FFAG) acceleration

Lattice Types

Cooling cells

- Cooling requires extremely large angular spreads: as high as $p_x/p = 0.3$
- ◆ Lattices may transport a factor of 2 in energy
- ◆ Lattices must be compact to achieve these acceptances
- ◆ Large beam size requires large magnet aperture
 - **★** Beam fills significant fraction of aperture
- ◆ Field no longer mostly constant
 - ★ Higher order terms are significant
 - ★ Series does not converge as quickly

• FFAG lattices

- ◆ Normally when accelerating in a ring, increase magnetic fields with momentum: equations of motion (nearly) invariant
- ◆ FFAG: keep fields fixed. Arc must accept a factor of 2 or more in energy

Cooling Cell

Field in Cooling Cell

Wide Energy Range

- Analysis of lattice
 - Find fixed point of map for fixed Δ
 - ◆ The closed orbit is the phase space variables as a function of s passing through this fixed point
 - ◆ Translate coordinates to coordinates relative to this closed orbit
 - Write map in these new coordinates
 - Now have eigenvalues as a function of Δ , other linear lattice parameters
- ullet Problem: truncation. Evalutaing Δ at large values gives effectively lower map in transverse variables
 - Linear lattice functions incorrect for large Δ
 - ◆ Tracking results manifestly wrong
- Solutions do not always converge with increasing order

Closed Orbits

Matrix Trace Error

Off-Energy Tracking

Solutions for Wide Energy Range

- Need separate parameterization in Δ
 - Some kind of spline function
 - \bullet Don't make total order count order of polynomial in Δ
 - Domain decomposition
- Potentially have similar problems for large angles, highly nonlinear magnets, etc.

Conclusions

- Traditional accelerators seem to be designed to be represented by Taylor series
 - ◆ Idealized contribution of a magnet is a Taylor series
 - ◆ Most deviations are small, making the Taylor series converge quickly
 - ◆ A single Taylor series gives a global map representation
- In muon accelerators, deviations are not small
 - Leads to problems representing large energy ranges
 - **★** To use Taylor methods, must parametrize energy differently
 - May also encounter problems resulting from
 - **★** Large angles
 - **★** Magnets whose end fields are significant